ICPC CERC 2021

Solution presentation

Ljubljana, 24. 4. 2022

ICPC $\begin{gathered}\text { International Collogiate } \\ \text { Programming Contest }\end{gathered}$

F - Letters

Simulate shifting the letters in a matrix.

- low constraints ($\mathrm{N}, \mathrm{M}, \mathrm{K}<=100$)
- simulate all four directions (e.g., left)
- process letters from left to right
- shift each letter as far left as possible

H - Radar

Find closest point from the intersection points of rays and concentric circles.

- too many intersections
- plane partitioning
- binary search for circular sector
- projection onto ray (A -> A^{\prime})
- binary search for nearest point to A^{\prime}
- careful: regions are not circular
- O(N $(\log R+\log F))$
- precision not an issue

A - Airline

Find the number of shortest paths affected by an addition of a new edge in a tree.

- find the path $x-y$
- lowest common ancestor, two paths
- small sum of $d(x, y) \ldots O(d), O(n \log n)$
- circular list of nodes with subtrees
- $d\left(s^{\prime}, t^{\prime}\right)>d(x, y) / 2$
- compute size of subtrees
- careful with LCA

K - Single-track railway

Minimize waiting time for trains going in opposite directions along the same railway track.

- no updates
- assume left train must wait
- it should move as far as possible
- similar reasoning for the right one
- find the meeting point
- prefix sums p_{i}, total time t
- rightmost station such that $p_{i}<=t / 2$, binary search
- waiting time left $(i)=\left(t-p_{i}\right)-p_{i}$
$-\quad$ answer $=\min ($ left (i), right $(i+1))$

- updates?
- data structure: modify value, compute prefix sum
- Fenwick tree: $\log (\mathrm{n})$ update and prefix sum query
- O(k $\log ^{2} n$)
- Segment tree (static binary tree)
- perform "binary search" by moving down the tree
$-\mathrm{O}(\mathrm{k} \log \mathrm{n})$

L - Systematic salesman

Find the optimal order of visiting left/right and top/bottom sets of points to minimize salesman's total path.

- represent recursive partitioning as a binary tree
- sort, split, recurse
- operation: swap left and right subtrees
- goal: optimize leaf order
- $f(x, l, r)=\min _{a, b} f(u, I, a)+d(a, b)+f(v, b, r)$

- min cost when l is the leftmost and r the rightmost in the subtree of x
- O(n^{3}) space? ... x defined by I and r
- pairs I and r, l and a, b and r should be from different subtrees
$-f(r, I)=f(I, r)$
- $\mathrm{O}\left(\mathrm{n}^{4}\right)$ dynamic programming is too slow
- $f(l, r)=\min _{a, b} f(l, a)+d(a, b)+f(b, r)$

- O(n^{2}) computation -> $O(n)$
- split in two parts I-a-b and a-b-।
- auxiliary function g (finds optimal a to get from I to b)
$-g(l, b)=\min _{a} f(l, a)+d(a, b)$
$-f(l, r)=\min _{b} g(l, b)+f(b, r)$
- time $O\left(n^{3}\right)$, space $O\left(n^{2}\right)$
- reconstruction: remember the optimal splits
- motivation: dendrograms (hierarchial clustering)
- Bar-Joseph et al., Fast optimal leaf ordering for hierarchical clustering. Bioinformatics (2001)
- Bar-Joseph, Demaine et al. K-ary clustering with optimal leaf ordering for gene expression data. Bioinformatics (2003)

B - Building on the Moon

Count the number of maximum non-adjacent edge lightings in a hexagonal structure.

- count maximum matchings
- perfect matching (red)
- use only passage edges
- small number of chambers (16)
- long passages (100)

- fix chamber edges that are not part of any passage (blue) and solve the "independent" passages

change: 1

unused: L+1

switch: 1

change: 1
- brute-force
- 8^{n} infeasible (most cases don't have a matching)
- decide for adjacent chambers (e.g. in DFS/BFS order)
- at most 4 cases, but mostly just 2
- additional improvements (not necessary)
- fix the node with the currently lowest number of possible cases
- dynamic programming with a profile of matched edges in outer chambers

I-Regional development

Construct a nowhere-zero M-flow from a nowhere-zero flow modulo M.

- modular flow violates Kirchhoff's law at nodes by $\mathrm{k} \cdot \mathrm{M}$
- fix violations by "reversing" the flow
- path from a deficit node to an excess node
- send M units in the opposite direction
- remains nowhere-zero
- reduces violation at both ends by M

- solution always exists
$-\mathrm{e}(\mathrm{x})=\operatorname{in}(\mathrm{x})-\operatorname{out}(\mathrm{x}), \quad \sum \mathrm{e}(\mathrm{x})=0$
- U ... nodes reachable from $u(e(u)<0)$ in the direction of flow
- all edges outside of U are incoming

- there must exist a node $v \in U$ with $e(v)>0 \quad\left(\sum_{x \in U} e(x)=i n(U)\right)$
- $O(R)$ violations by a factor of $M \ldots O(R(M+N))$
- Ford-Fulkerson max flow
- link up deficit and excess nodes along the positive edges

- nowhere-zero flows are related to colorings of planar graphs

E - Fishing

Find rectangles with maximum sum within given regions of a sparse matrix.

- fixed height, limited width
- $\mathrm{H}_{\mathrm{j}}=1$
- maximum subarray sum in range

- segment tree
- sum, max subarray sum, max prefix, max suffix
- O(log M) query

- H_{j} are increasing
- matrix is sparse (only K nonzero entries)
- update the segment tree with new elements ($\log \mathrm{M}$ affected nodes)
- $\mathrm{O}(\mathrm{K} \log \mathrm{M})$

\square

\square
\square
\square
\square
\square
\square
\square $+X$
- solve for all heights and store segment trees
- O(N M) ... too large
- build persistent segment trees (path copying)
- precomputation, space: $\mathrm{O}(\mathrm{K} \log \mathrm{M})$
- query: $\mathrm{O}(\log \mathrm{M})$

G - Lines in a grid

Count the number of lines lying on at least two points of a grid.

- simplifications
- \#vert. = \#horiz. = n
- \#incr. = \#decr.
- \#flat = \#steep, \#diag. = 2n-3
- direction $\left(\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}\right)$
$-1<=d_{y}<=d_{x}<=n-1, \operatorname{gcd}\left(d_{x}, d_{y}\right)=1$

$-t\left(d_{x}, d_{y}\right)=\left(n-d_{x}\right)\left(n-d_{y}\right)$ offsets
$-\#$ lines $=\sum_{d x, d y} t\left(d_{x}, d_{y}\right)-t\left(2 d_{x}, 2 d_{y}\right)=f(n, 1)-f(n, 2)$
$-f(n, k)=\sum_{d x, d y}\left(n-k d_{x}\right)\left(n-k d_{y}\right)$
- $f(n, k)=\sum_{d x=1 . .(n-1) / k} \sum_{d y=1 . . d x}\left(n-k d_{x}\right)\left(n-k d_{y}\right), \quad \operatorname{gcd}\left(d_{x}, d_{y}\right)=1$

$$
\begin{aligned}
& =\sum_{d x=1 . . a} \sum_{d y=1 . . d x}\left(d_{x} \perp d_{y}\right)\left(n^{2}-k n d_{x}-k n d_{y}+k^{2} d_{x} d_{y}\right) \\
& =\sum_{d x=1 . . a} n^{2} \varphi\left(d_{x}\right)-k n d_{x} \varphi\left(d_{x}\right)-k n F\left(d_{x}\right)+k^{2} d_{x} F\left(d_{x}\right) \\
& =\sum_{d x=1 . . a} n^{2} \varphi\left(d_{x}\right)-k n \varphi^{\prime}\left(d_{x}\right)-k n F\left(d_{x}\right)+k^{2} F^{\prime}\left(d_{x}\right)
\end{aligned}
$$

- precompute cumulative sums of $\varphi, \varphi^{\prime}, F, F^{\prime}$
- $\varphi(x)=$ number of integers coprime to x (Euler's phi) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- $F(x)=$ sum of integers coprime to x $F(x)=x \varphi(x) / 2 \ldots$ numbers u and $x-u$ coprime to x at the same time

D - DJ Darko

Update an array of speakers by increasing a range by x or by setting speakers in a range to a "normalized" value.

- ranges of speakers with the same value
- store only differences (index, difference)
- increase volume
- two changes: at the start (+x) and at the end (-x)
- get volume: prefix sum
- set volume
- extract list of affected ranges and replace with a single range of normalized volume
- amortized analysis
- increase introduces a const. number of new ranges
- set removes some ranges (or adds at most two)
- computing the normalized volume v
- sort by volume, "weighted" median
(volume: costs) ... $\quad(2: 1+2+1),(5: 7+1),(1: 3+2+5),(7: 4),(2: 2+9)$
(1:3+2+5), (2: $1+2+1$), ($2: 2+9$), (5: 7+1), (7:4)
- one of existing volumes is optimal (or we could move it)
- compare sum of costs in both directions (L and R)
- move from i-th to (i+1)-th volume?
- gain, loss per unit of volume ... $\mathrm{L}_{\mathrm{i}}+$ cost $_{i}$ < total_cost / 2
- O(q $\log \mathrm{n})$
- removing and adding ranges takes $\mathrm{O}(\log \mathrm{n})$ per range
- practical considerations
- introduce 0 differences to align ranges of speakers with the same volumes with query bounds
- use a static tree (Fenwick, segment tree) and store locations of nonzero leaves in a separate set
- find affected ranges in the set in $\mathrm{O}(\log \mathrm{n})$
- find the actual volume of each range in $\mathrm{O}(\log \mathrm{n})$

J - Repetitions

Find the longest repetition for each given substring.

- square factors, Main-Lorentz (repetitions in a string)
- divide \& conquer: left half, right half, crossing the middle?
- test(u, v) $=$ testLeft($u, v)$, testRight($u, v)$

- consider different lengths k
- b ... pref(v, k) $=$ longest prefix of v starting at k (z-algorithm)
- a ... suf($v, k)=$ longest suffix of u ending at k in $v\left(\operatorname{pref}\left(u^{\prime}+v^{\prime}\right)\right)$
$-|a|+|b|>=k, \quad|a|,|b|<=k, \quad$ leftmost-maximize $|a|$
- complexity $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- $\mathrm{O}(|u|+|v|)$ for testing a pair of adjacent substrings
- O(n) at each of the $O(\log n)$ levels
- generalize to substring queries
- store results of the D\&C tree
- consider occurrences at bounds (test)
- merge results from smaller towards larger sections of size 2^{i}

s_{1}	$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{4}$	$\mathrm{~s}_{5}$

- $\operatorname{test}\left(s_{1}, s_{2}\right), \operatorname{test}\left(s_{1}+s_{2}, s_{3}\right)$
- test $\left(s_{4}, s_{5}\right), \operatorname{test}\left(s_{3}, s_{4}+s_{5}\right)$
- $\left|s_{1}\right|+\left|s_{2}\right|<2\left|s_{2}\right|, \quad\left|s_{1}\right|+\left|s_{2}\right|+\left|s_{3}\right|<2\left|s_{3}\right|$
- O(n)

C - Cactus Cutting

Count the number of ways of cutting a cactus graph into sticks (paths of length 2).

- directed sticks (towards center)
- class of solutions
- k incoming edges (even k) $(k-1)(k-3) . . .=(k-1)!!$

- directing an edge produces two almost independent problems

- DFS tree
- back-edges ... disjoint cycles
- f(v, p, c) ... number of cuts into sticks of subtree rooted at v with parent edge pointing towards $v(p=1)$ and cycle edge pointing down the tree ($c=1$)

- every child edge can be directed either way and contributes to v
- no edges: f(u, 1, c)
- 1 edge: $f(u, 0, c)$
- child whose edge is first in a cycle contributes:
- no edges: $f(u, 1,1)$
- 1 edge: $f(u, 0,1)+f(u, 1,0)$
- 2 edges: $f(u, 0,0)$
- find cases that contribute together exactly k edges?
- polynomials
- each child represented as ($a+b x$) or ($a+b x+c x^{2}$)
- product: coefficient at x^{k} counts solutions that contribute k edges
- consider contribution of p and c (in case of last node in a cycle)
- multiply a list of polynomials (merge)
- FFT
- careful with precision!
- split the polynomial into two smaller ones $\mathrm{A}(\mathrm{x})=\mathrm{A}_{1}(\mathrm{x})+\mathrm{CA}_{2}(\mathrm{x})$ $A B=A_{1} B_{1}+C\left(A_{1} B_{2}+A_{2} B_{1}\right)+C^{2}\left(A_{2} B_{2}\right)$
- 4 FFTs
- $O\left(n \log ^{2} n\right)$
- additional optimizations
- multiply small polynomials naively
- p has no effect on the product
- c effects just one term in the product (child that is part of the cycle)
- handle factors C or Cx separately (leaves)

The End

